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ABSTRACT

’ Phis paper is concerned with one-step difference methods for parabolic
history value problems in one space variable. These problems, which have the
feature that the evolution of the solution is influenced by 'all its past'
occur in the theory of viscoelastic liquids (materials with 'memory’'). The
history dependence is represented by a Volterra-integral in the equation of
motion. Using recently obtained existence results (sée“nenardy (1981b)) and
smoothness assumptions on the solutiontwe derive a local stability and
convergence result for a Crank-Nicolso;~type difference scheme by interpreting
the linearized scheme as perturbation of a strictly parabolic scheme without
memory term. Second order convergence is shown on sufficiently small time
intervals. The presented approach carries over to other one-step difference

' methods like implicit and explicit Euler schemes.
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SIGNIFICANCE AND EXPLANATION

In this paper we deal with the numerical solution of parabolic history
value problems. These problems have the feature that the governing equation
depends on the history of the solution such that it is posed as functional
differential equation (that means that the equation can involve Volterra type
integrals and not only derivatives of the function in question). Problems of
this kind occur in the theory of viscoelastic fluids and there the functional
term of the equation represents the 'memory' of the material. We devisge a
finite difference method for the numerical solution of such problems and
investigate the convergence properties. It turns out that this method (which
is of Crank-Nicolson type) is second order accurate as the grid parameters

tend to zero.
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DIFFERENCE METHODS FOR PARABOLIC HISTORY VALUE PROBLEMS

Peter Hatkowich'
1. Introduction
We are concerned with finite difference methods for scalar functional differential
equations with prescribed history data:
1) S N N -1,1}, t >0

(1. “tt ax 9 uxt'ux)’ x e 1),
(1.2) ulx,t) = ulx,t), x € [-1,1], £ €0

t
(1.3) g(uxt(-1,t), ux(-l,')) =f (v), £t 20

t
(1.4) g(uxt(1,t), ux(l,')) = f+(t), t?20 .
Here we denoted the history of a function y € C({-®,0]) (which is the space of all
continuous functions on (~®,0] with a finite limit at t = -®) by yt(s) = y(t+s),
s € 0 and the (possibly) nonlinear functional g : R X § * R where & is an open set in
C(({-%,0]). We also assume that the Frechet derivative (with respect to the first argument)
D1g >€>0 in R 92 This assumption makes it possible to interpret (1.1)~(1.4) as a

parabolic initial-value problem in a certain Banach space (see Renardy (1981b))}. Histories

for the boundary data ux(-1,t) and ux(1,t) are Gx(-1,t) and Gx(l,t) resp.

Assuming that (1.3), (1.4) with the corresponding prescribed histories can be solved
for ux(-1,t) and u (1,t) resp. we are left with a (parabolic) history value problem
with Neumann boundary conditions at x = 1,

Problems of this kind occur in the theory of viscoelastic liquids when the
constitutive law is expressed as a function of the strain history (see Lodge (1974), Lodge,
McLeod and Nohel (1978) and Renardy (1981b)). The functional g is assumed to be of
Volterra type:

(1.5) glu_ u) = v(u _,u ) + [ att-s)blu  (t),u (s))as .
xt’ x xt’ x ~® xt x
2

where Y, b : R* * R and a(9) is an exponentially decaying (as 0 *+ ®) memory kernel.

The dependence of u on the space variable x is not stressed explicity.
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In this paper we set up a Crank-Nicolson-type discretization for (1.1) on an
interval [0,T] with given history (1.2). The boundary problems (1.3), (1.4) are
discretized by the mid-point rule thus giving discrete Neumann boundary 3lata for the Crank-
Nicolson scheme., Assuming that T 1is sufficiently small and that the solution u of
(1.1)-(1.4) is sufficiently smooth we show stability of the linearized difference scheme
and consistency of the nonlinear scheme at the exact solution u in a discrete Sobolev
space norm. From this and from the uniform (in the mesh-sizes) Lipschitz continuity of the
linearized scheme we conclude convergence (of order two) from Keller's (1975) theory.

The approach is to interpret the linearized difference scheme as perturbation of a
strictly parabolic scheme (without history term) and stability of the scheme for the
history value problem will be concluded from the stability of the parabolic difference
scheme., Therefore this approach is applicable to other one-step difference schemes like
the implicit and explicit EFuler schemes, The implicit Euler scheme may be chosen if
approximations are needed on a large interval [0,T] (assuming the exact solution exists
there) because it is strongly A-a-stable (see Markowich and Renardy (1981a,b)).

The paper is organized as follows. In Section two we define the function spaces which
we will need and introduce some notations. Section three deals with the discretization of
the boundary problem and Section four is concerned with the Crank-Nicolson scheme for

(1.1),

2. Definitions and Notations

We denote

(2.1) chit=,e 1) = ct((=,t 1) A {£:(-=,2,) * R|lim £(t) is finite and

tr-n

lim f(j)

-

(t) = Q0 for j - ,1000,1}0 i@ -o

for some t, @ R. For y & ci([-',t’l) we define the history yt ] c‘(l-,ol) by

yE(s) = y(tes), 8 @ (~=,0),

-2=




ety |

Renardy (1981a) investigated a model for the stretching of a filament of polymeric
liquid in the form of an initial value problem ({(%i.1), (1,3), (1.4) are assumed to hold on
[, 7], TeRV {»} and u(x,t = -») is prescribed). He used a functional g of the
form (1.5). A global (T = ®) existence and uniqueness theorem for sufficiently small
data f_, f_ (in the sense of a certain Sobolev space) and a local (for T < 0, |T|
large) existence and uniqueness theorem for arbitrarily large boundary data was
established. The boundary problem (1.3) (in initial value form) was investigated
analytically and numerically in Markowich and Renardy (198t1a) using an implicit Euler-type
discretization.

The full spatial-temporal problem (in initial value form) was investigated numerically
in Markowich and Renardy (1981b). Again, an implicit Euler-type discretization was use.u in
order to get approximate solutions with the same asymptotic hehaviour as the exact solution
{as t *+ ®) and in order to cope with the sinqular perturbation character of the problem
{the Newtonian contribution of the viscosity acts as singular perturbation parameter).

Lodge, MclLeod and Nohel (1978) investigated the history value problem for the boundary
problem {1.3) assuming the relation (1.,5) with Y specified. Under certain assumptions
on a and b they proved a global existence theorem and investigated the asymptotic
behaviour of the solution as t *+ =,

Nevanlinna (1978) employed an implicit Euler-type discretization for the boundary
history value problem and proved uniform convergence on [0,®] of the order O(hx),

0 <A<,

Renardy (1981b) proved a local (for t € [0,T], T sufficiently small) existence and
uniqueness theorem for the history value problem (1.1)-(1.4) under mild assumptions on the
functional g (not using the special form (1.5)). He transformed (1.1) to a system of
equations which can be interpreted as parabolic in the Banach space C((-=,0], #Cl-1,110).

This system can be treated following Sobolevskii (1966),




In the sequel g always denotes a functional from R x @ into R where £ is an
open get in some space of functions which are defined on [~=,0]. Frechet derivatives of
g are denoted by indices (g; denotes the derivative of g with respect to the first
argument, g, with respect to the second argument, g4, for example denotes the second
Frechet derivative of g obtained by differentiating first with respect to the first
argument and then with respect to the second argument).

Lz([-t,ll) denotes the space of square integrable functions on ({-1,1], Hl([-i,tl)
denotes the space of Lz([-1,1]) functions whose (generalized) derivatives of crder up to
% are square integrable and Cm([t1't2], Hl([-1,1]) denotes the space of C™-functions
u oz {ty,t,] * Hl([~1,1]). All these spaces are equipped with their natural norms.

For the difference scheme we define a grid Gr(h,k) on the infinite strip
{-1,1] x [-»,T) by setting h = %, k= E) M, N € N such that
(2.2) Grih,k) = {(xj,tn)lxj- 3, 3= (=M=1)(1)(M¥1); t = nk, n < N}
holds. The exterior gridpoints (x_,_,,t; )}, (xy,4t;,) will be needed to define a second
order approximation to the Neumann boundary conditions. We denote grid functions by

(N M+1 b]

) o n.N
U ((u,) ) 1 U1

LIPS P € R. We also need grid functions on Gr(h,k) - {exterior grid

points}. They are defined analogously.

By UiN) we denote the grid function on Gr(h,k) 0 {(xj.tn)lj = i, n < N}:
Ny N
(2.3) u M - wht .

For the discretization of the boundary problems we need the {tn = nkin € N} grid on the
real line and

nd

(2.4) y(“) = (yn)“

n=-—

¢ Yne‘

= (n + l)k. We define the following time-

are functions on this grid. Also we set t . . 2

difference quotients:

+n n+1_ n
(2.5)(a) 'y" - L1
-n n_ n-1
(2.5) (b) 8y =
k
-g-




(2.5)(c) oyt = —L

+n

sy = %(6 y" + 8y™) holds. We need the spatial differences:

Obviously 5+yn =67y

zi+1-zi
(2.6)(a) A+zi h
z, -z
i Ti-1
A -
(2.6)(b) -z "
Z,, .,~2
i+1 Ti-1
(2.6)(c) Azi = ™ .

These difference quotients will also be applied (component wise) to grid functions, for

example AUi“) = (AUE):-__.

3. The Boundary Problem

In order to solve the boundary problems (1.3), (1.4) for ux(l,t) and ux(-l,t)

resp. we discretize

(3.1) aly'(e),yS) = £(¢) , tefo,m , Tew
(3.2) ylt) = y(&) , te [-=,0]
by the midpoint rule
t
+.n (N), “n+1/2y _ -

(3,3) g(8y", (1,y ) ) £t L1/p) =0 0 Sn <N

n -
(3.4) y - y(tn) =0 , n<0 .

Here y" denotes the approximation to y(tn), y(N) = (yn):__. and i, is the linear

interpolation operator defined by

(3.5)(a) i, 1 Ay = {u™ = WY _lui € R, lim ot = u" e R} — c(t-=,m)
n=~ jrem
(N) i + i
(3.5)(b) (Lu ") {t) = u” + $'u (t-t,) for t, <t Sty el <N .

We denote the right hand aide of (3.3), (3.4) by

(3.6) ry™r =0

where




(3.7) Fk:QN*BN R QN open, QNCAN N

Here A, is equipped with the norm
Iu(N)l = max|u”?| + max|8"u®| + max |6+6—unl .
néN néN 1€n<N

(3.8)

By equals A, (as a set) but as norm we take

H(N)IB = max|w"| + max|§ w"|

N n€N n<N

(3.9) ]

: QN is open in Ay since g(v,*), v € R is defined on an open set 2 ¢C C([-=,0]).
The convergence analysis of (3.6) proceeds along the lines of Keller's (1975)
stability-conaistency concept. For consistency we need smoothness assumptions on (3.1},

(3.2). We assume that there is locally unique solutions y of (3.1), (3.2) and that
(3.10)(a) gec’mx®, m, ¥€ C((-=,01), g, > €>0 on RxQ

(3.10)(b) £ e c3([0,T])

(3.10)(c) y e ctro,m), v e ctit=,00);

(3.10)(a) y e ((~=,11), y" €8 for te (0,1

holds. A local existence (and uniqueness) theorem is given in Renardy (1981b). (3.104d)
holds if the compatibility requirements

(3.11)(a)  g(y'(0), y) = £(0)

(3.11)(b) g (¥'(0), YIY"(0) + g, (¥y'(0), y)¥' = £'(0)

are fulfilled.

We check consistency of the scheme (3.3), (3.3). We denote

;(N) = (gt ))N .

(3.12) n) ) e

A(N) Sne1/2

(3.10)(c),(d) imply that (iky ) e for k sufficiently small and so Q(N) eq

N
holds. Obviously (rk(’im)))" - 6'(rk($‘"’))" =0 for n € 0. Since
(3.13) 1.3 -y (wa,m) = o(x?)
r

(because ; e Cz([-',cl), ye Cz((O,T]) and t = 0 is a grid point) we obtain using
(3.10)(a),(b) and the mean value theorem
(3.14) e ™M™ = o0y .

The smoothness assumptions (3.10)(c),{(d) imply that




t
kQ(N)) n-1/2 t
- (¥")

t
(N) +1/2
gy =Y

(i

K )

- (i

(3.15) 1 - = o(x?)

|
[-OIO]
holds. Using (3.10), (3.15) and the differentiated equation (3.1)

(3.16) g,y (e)yFiyn(e) + gz(y'(t),yt)(y')t - £'(e) = 0

((3.10)(d) implies that (y")¥ e c'((-=,0])) we get, after a simple calculation

(3.17) |6+(rk(9(")))"| =ok®) , ne<w .

Since all estimates hold uniformly for n € N we obtain from (3.14), (3.17)

A(N) - 2
(3.18) IEFT N, = o) .

N
Therefore the scheme (3.3), (3.4) is consistent of order 2 at Q(“) if (3.10) holds.
To check stability we calculate the Frechet-derivative of F, at Q(N) and get for

LIPS

a(N) u(N))n+1

t
. - + . A(N), n+1/2 + n
(3.19(a)  (Fp(y ™) g, (8 yle ), (i ¥y ) 16w+

t t
+ . A(N), "n+1/2 (N), n+1/2
+ g (8%y(e 3,1 3 P2 W P2 g < en
(3.19) (b) (r;(?‘“’)u‘“’)“ =u" ,n<o0 .
In order to get an estimate on the norm of (FQ(Q(N)))~1 B BN * AN we investigate the
equation
AN) L (N) _ (N) (N) _ i
(3.20) Py u v . ? ¥ w€By -

For n € 0 we have u® = ,*, §Tu" = 6 y" and for 0 < n < N

t
(3.21) 81t = § o0 (1M B2, 0

where an(k) is the linear functional

t
n g, (8 % (e ), (1, §N)) ™12
(3.22) 5,000 = -

t
+A A(N). “n+1/2
9,87yt ) (L y ) )




“
An+l "

(3.23) [ =

t
+A . (N}, n+t/2
91(5 yle Lty ) )

holds. The assumption g’ 2€>0 on RX  implies that an(k) ig uniformly bounded
(in k,n) and that

~ N+l

(3.24) o< constlwn+1l uniformly in k, n < N

holds. From (3,21) we get:

+1 j
(3,25) fu € [0 + ck  max lul] + ck |wn+l|
1<) <n+1
and setting v" = max |u"|, 2" = max |¢7| we obtain
1€j<n i¢n
(3.26) POV o™ ez,
From
n+1 1 n n+1
<
v Tock v + clkz
. n cT j
we immediately get [v | € c,e” T max |z?| and therefore
1<j€n
(3.27) max |u"| € const. max J¢"|
n€N n<N
holds. We obtain from (3.21)
(3.28) max |[6*u"| < const. max |o"| .
n€<N=-1 n<N

In order to prove stability in the norms of AN' By we apply 8" to (3.21) and obtain

t t
. (N), n+1/2 (N), n=-1/2 A A
(i u ) - (i, u ) g (k)-g (k) t
~g+t N _ A k k n n-1 . (N}, n-1/2
(3.29) 878" = g (k) " ) + ()

+67" , n>o0 .

A

A
3,065 _ (k)

(3.10) implies that is a uniformly bounded functional {(in k,n) and

k
therefore the second term on the right hand side of (3.29) is bounded by const. max [¢"|.
n€N
We get by a simple calculation (similar to (3.15))
t t
-1/2
(i u(N)) n+1/2 _ (1KSN) y P 1/ on . -
. | < [ = -
(3.30) ! ” (o,=) ¢ max 16%u"| + 5 max {878y .

n<N n<N

-G




Repeating the argument following (3.21) we get

-+ - n n
(3.31) max |S 6 u" o< const.(max|6 ¢ | + max|y |)
1€n<N n¢N néN

and stability follows:

(3.32) |(F‘;(’§‘"’))"l

where const. is independent of k. We also have to show uniform Lipschitz continuity of

A (N)

A(N)) < QN. For a(N), % e Sp(y ) with p sufficiently

F; in a neighborhood Sp(y

small we get from (3.19) and the mean value theorem:

u(N)l < const.la(N) - b(N)

BN AN AN
for all u(N) e ny where const. is independent of k. (3.10)(a) was used for (3.33}.
(N)

(N) b(N)

(3.33) H(Fi(a ) - F;( ))

Therefore uniform Lipschitz continuity of F! ).

x holds on Sp(y

Now, having proven consistency, stability and Lipschitz continuity we apply Keller's
(1975) theory which gives:
Theorem 3.1. Let the assumptions (3.10) on the history value problem (3.1}, (3.2)

hold. Then for all k sufficiently small there is a locally unique

solution y(N) e QN C-AN of the midpoint rule (3.3), (3.4) and
n n=1 '
(3.34) maxly -y(t )| + max|8y~ T - y'(c )| +
niN n<N

+ max|5+5-yn_1 -yt =0k as k>0 .

n-1
n€N

Moreover the (abstract) Newton procedure

(N) _ =(N)
(3.35)(a) v(o) V(O)

(N) L oG(NY L (NY -1 (N) X
(3.35)(b) v(i*1) = v(i) (Fk(v(i))) Fk(v(i)) , 120

converges quadratically (to y(N)) from a sphere of starting values
which does not shrink as k * 0.

The abstract Newton method (3.35) immediately translates into the Newton method for

3,0

j:-a

determining y‘,...,yN from (3.3) assuming that (y is given.




For the convergence analysis of the boundary problem we ho not require T small

(except that a smooth solution of (3.1). (3.2) has to exist on {-*,T)). Therefore Theorem
(3.1) holds for any finite T to which the solution y can be smoothly continued.

However, the stability conatant (3.32) depends on T and 8o does the estimate (3.34).

4. The Parabolic Problem

We now discretize the full spatial-temporal problem:

(4.1) Uy - q(uxt.u:)x =0, x6 (-1,1], t & {0,T]
(4.2) ulx,t) = alx,t), x € [-1,1), t € [-»,0]
(4.3) “x“"’ - y’(t). te (-=T]

(4.4) .ux(-l,t) =y (), t 68 [-=T)

whers Yy, , y_ solve the boundary problems
t
(4.5) g(y;(t)' yt) - f*(:), t e [0,T)
{4.6) ¥, (t) = u (31,t), t & (-=,0]
which fulfill the assumptions of Section 3., For convenience we carry out the

differentiation in (4.1) (assuming sufficient smoothness)

t t,. t
(4.7) %t-mﬂﬁynm“t+%m“m3%0-o,xehnn,:emml.
We discretize (4.7), (4.2), (4.3), (4.4) by the Crank-Nicolson method:
t
LR (N), 'n
(4.8) 8767yl - (g, (8807, (i A0y Myes 8 0D+

N)
i

for 1 = -M(1)M; O <n <N

*n o, %n
+ g (8807, (1,807") Mz 880N ™ w0

(4.9) o - Slx st ) = 0, & = H(1)M, n <O
n
(4.10) Au: -y, =0, n<w
(4.11) sl -yl =0, n<N .,
Uj denotes the approximation to u(x,,t_ ) and U(“) = (Uj)N The boundary values
y e PP ity i 1!y b4

y:, y?, n ¢ N are computed by discretizing (4.5), (4.6) according to Section 3 and




e o o

therefore are assumed to be known., 1In (4.10), (4,11) we introduced the exterior grid

n . . .
u in order to get second order approximations for the Neumann boundary

n
values UM+1' M1

conditions.
As a device for the analysis of the scheme we substitute

n n (xi-‘)z n (xi+')2 n
(4.12) LA 2 Y. - 2 Yoo 1= (sM=12(1)(M41)

in order to yet homogeneous Newmann boundary conditions. In operator form we write

Ny,
{4.13) Gk’h(w }=0

for the left hand gides of (4.8), (4.9) where

“(N) - ((H?)N )M+1 ,

(4.14) 5o ot

and build the homogeneous boundary conditions into the spaces. We define

2
(4.15) L= v=v g, eev v, er v =V Vot = Vaor!)

AR -M-1 “M+17 M4 M=1

1

M -
2.3
vt = (h ’X v 15% .
i=-M

ii is defined by skipping the components V_M_I, Vet of the elements V of L:.
Moreover
1 2 2 2
H {ve Lh}, v {ve Lh}
(4.16) (3% ] 1 " [ 3] 2 + 1avi

A |

wE o= s 13t8"vi s ,
Hh Hh Lh |

L: and H; are the discrete versions of Lz([—1.ll) and Hi((-|,1l) resp, For

arbitrary Banach spaces X,Y we define

(4.17) c (X,¥) = iz . (zJ)';___lzJ €Y for 0<j <N, 20 €x for
5 €0 and lim 27 € x) ‘
jo_c i
lz(mlC (x,y) = max 1Z™M + max 12701 + max €67z™
k' 0<n<N n<0 n<o

11~




(N)

3

iy = 2™ e @Y 127 ex, 1in 2d e x)

k b] jo-=
(4.18)

12N s max 1M v max 082N

Ck(X) né¢N n€N
We regard Gk h as the following mapping:
,
1,.2 2 =2
. L d

(4.19) Gk,h : QN,MC ck(Hh) Ck(ﬂh, Lh) B

assuming that f*(t) fulfill (3.10)(b) and that the boundary values y*(t) fulfill
(3.10)(¢),(d). Moreover g e C3(l x Q, R, A< c([-=0]) open,
gecimxg, t2((-1,11)), 2 c c((-=,0], 2((-1,1]) and

(4.20)(a) @ is open, 9, >€>0 on RXxQ

shall hold and the parabolic problems (4.1)-{4.4) has a locally unique solution u which

fulfills

3 4 4
(4.20)(b) uecitio,m, atc-r,un n ctoom, Lyc-1,1)
(4.20) (c) 3 e c3=,01, wdi-1, 110, 3, e cll-=,0], B, unna .

Assumptions on the history U and on (4.1), (4.4) which guarantee the required smoothness
of u can be deduced from Renardy (1981b).
A lengthy calculation shows that

(4.21) 16, w'™n = o(k?) + o(h®)

™, ((Gj)N )M'H and

A
holds, where W 17 jmem’ fmap-1

(x -1)2 (x +1)2

i
y(ty) - —g—

43
(4.22) "i u(xi,t ) +

t.), i = -M(1)M,5 €
3 y+( j) M(1)M, 3 N

A3 W) &) S |
with HH+‘ WH_1, H_H_1 "—H+1' For (4.21) we used the boundary convergence result

(3.34) (convergence of the second derivative of the boundary grid functions YE'

y3 is necessary here).

As expected our scheme is consistent of second order at the 'exact' solution.

=12~




A
For the stability analysis we calculate the Frechet darivative of Gk,h at H(N)
getting
, A(N),(N) N+t ckgen A no_
(4.23)(a) (Gk'h(w W )i §76 vy gl(xi,tn,h,k)GA‘_A_vi
A Ve oo an (N) “a
- gz(xiltnlhrk)AG i - q(a)i(hlk)(lkAvi ) -
t
an ; {(N), n
9(q)s (heR) (3, B8 V)
for i = -M(1)M, O S n <N
(4.23)(b) (@ @ P 5 o (1) (1) (Me1), n <O
k,h i 1
(N) _ j.N M+1 1,.,2 n - " n I
Here V = ((vx)j=")i=—v-1 € Ck(Hh) such that V.. = V_ and V__ . =V . holds
for n € N. We obtain
t
A N n
= i >
{(4.24) q1(xi,tn,h,k) g1(A&u(xi,cn),(lk(Au(xi,tj))j___) ) €>0
t
3 (x.,.t_,n,k) =g __(ASu(x_,t ), (i (Bdu(x.,t ))“ )y ™M
277 1 ik 1773 e
(4.25)
N tn N tn
+ 921(AGu(xi,tn).(lk(Au(xi.tj))js__) )(1k(A+A-u(xi'tj))j--.)

and 673)1' 3?4)1 are linear functionals on C([-=,0)) involving Frechet derivatives of
g of at most order two.
Similarly to the consistency result we get:

t
A n 2 2
(4.26) 91(xi,tn,h,k) = g‘(uxt(xi,tn),ux (xi, D+ 01(xi,tn.h,k) + k pz(xi,tn,h,k)

t
A 3 n 2 2
(4.27) 92‘”1"n'h'k) = 3% q,‘(uxt(xi.tn),ux (xi, )) +h a‘(xi,tn,h,k) + Xk az(xi.tn,h,k)

M M
where the vectors (pl(xi,tn,h,k))i__", (al(xi'tn'h'k))i--ﬂ’ L = 1,2 are uniformly bounded
. =2
L e
in Ly
We invegstigate the linear equation
A
(4.28) TR AL ALY
n,k
’ (N) 3,0 M+ j,N M . 2 -2 n n n n
for P (((Fi)j-")i--u-ix(ri)j-l)1--N) € Lk(Hh.Lh). anl F“_1, F-M-\ = F et holds

for n € 0. As in the continuous case (see Renardy (1981b)) we set

-13«




(4.29) Pl = 8V]; RY = &V o = 8.8 V]
and get the parabolic system of difference equations
(4.30)(a) 6*e] = ar7"
(4.30) (b) 6%} - A‘A_R:*1
(4.30)(c) $R] = 39, 0t a8 8 RT 4 RD) 4
+ 3 8,0t s o RD) +

t t
AD . (N} . n an . (N), n n+1
+ 93(1)(h'k)(lkPi ) + 94(1)(h,k)(Lin ) + Fi

for i = -M(1)M and 0 € n <N, For n €0 we have

(4.31) p: = AP:, R: a d'p:, Q: - A+A_F:
and R:+1 = R;-l’ RSH_1 - R2n+1 holds. Asgsuming that T is sufficiently small we regard

14.30)(c) as perturbation of the time-independent scheme

+n 1 A “n+d “n

[ Ri -3 91(xi'°'°'°)(A+A-Ri + A+A_Ri) +
(‘032)(3)

1A “n+t “n n+1
+ 3’92(xi,0,0,0)(ARi + ARi) + Hi s 1 = M(1)M, O < n <N

(4.32)(b) AR = 48" =0, 0<n <N

R ~M !
(4.32)(c) R) = Byp 1= (=H=1)(1)(Ms1)

=0 =0 =0 -0 “n “n “n “n .

where R-H-1 = R-M+1' R“+, =R, 4 holds. Denoting R = (R-n""’RO""’RM) we write

(4.32)(a),(b),{c) in matrix form

1 20 _ =0

o+ B1(h,k)Rn +xi™, 2% = R/

(4.33) Bo(h,k)R

_H1,...,H3*1....,H:+1) has been set. The zero-Neumann boundary conditions

(4.32)(b),(c) are incorporated in the M X M natrices By(h,k), B, (h,k} (see (4.51), (4.52)).

where #"* o (H

Proceeding similarly to varah (1971a,b) we derive

-1
. < L
(4.34) IBo (h,k)l_2 c‘ :

(4.35) 1ee; tnoxm, (haent_, <o, 0 €1 <n

2 2’

as h * 0, k * 0 where C,, C, are independent of h,k. (4.34) allows to rewrite (4,33)

-1¢-




(4.36) ™ - cth,kR™ + ka;’(h.k)u“”. g% = &

with C(h,k) = a;’(h,k)s‘(h,k).

From (4.35), (4.36) and consideration similar to Benderson (1971) we get the stability

estimate
(4.37) max IR"1 v max 18'R™M < (RN v max w1 .
<n< <ns <
0<n¢N |-lh 0<n<N Lh H O<néN Lh
Now we 4assume
(4.38) h2 = Ak, A =const #0 as h,k *+ 0 .

For the difference scheme

+-n n+1t
(4.39)(a) ) P ARi
(4.39)(b) 87 = 8,8 RM
+n 1t A n+1 n =i
(4.39)(c) §'R, =—g,(x.,0,0,000 A4 (R, +R,) +
1 2 1 1 + - 1 1 0€n<N
1 A n+1 n n+1
+ 3 92("1'0'0'0)A(R1 + Ri) + Hi
and
(4.39)(d) 8R], = 8RL =0, 0 < n <N
0 =0 0 =0 0 =0 |
(4.39)(e) R/ =R, P, =P, Q =0/, i=-M1)M

we get immediately

(4.40) max 1P _, + max 087R"0__ + max a™s_, +

osn<w L o<nen i osncy Lﬁ

+ max ls#in_ + max IR"1 _ + max l5*RnI_ ) €
0<n<N Lh 0<n<N Hy 0<n<N Ly

< const (15%1 o * l§°l_2 + 1”9 _ ¢ max IH“I_ ) .

2
Lh Lh Hh o<n<N Ly

We now interpret (4.30) as perturbation of (4.39). Therefore we write

t t t
A0 (N), n a0 A(N), n AO CRMN) . n
(4.41) gau)(ik?l ) = gs(x)“x"i ) + "3(1)“;31 )
t t t
AO (N), n A0 . A(N).'n A0 . R(MN) . n
(4.42) E TR AR B PYPEAC A B gL MYFRC N

(3 N
ai'.gfi’ for j >0 and 33:6’=o for j > 0;

where Qj-yso fotj‘O;sjtPj i

i 1 i i’

X4 j 2 s .
Pi. = Pi, Qi = Qz for j € 0 and incorporate the second terms of the right hand sides of

-15-




(4.41), (4.42) into the inhomogenity F?" obtaining F2+‘. The perturbation originating

. Ad A0 AN an , .
from taking 9301 J4(1) instead of 93( ) and Ja(i) FEOP will be investigated
later. We denote the sum of the two remaining terms in (4.41), (4.42) by & (PJ,QL j=1

and from (4.20)(a) we derive the estimate

M

i,Qi J-l xa-H' 2 < const( max IPJI_ + max IQJI
h

(4.43) l(ﬂ (P .
196 Lo 1<63<n L

h
uniformly as h,k * 0.
We denote
(4.44) A% = 0 B O g R R
and rewrite the perturbed system (4.30) (with t =0 in g‘, 92 and Gg(i)' 32(1)

instead of q;(i), q:(i)) as

(4.45)(a) zo(h,k)n"” = £ (h,kA" + kno(n,k)n"” + KL (h, kA + kﬂ(Aj)ga‘ + k™!
(4.45)(b) a = a°
where
1 9 ~kD, (h, k) ) M1
8 1 =KD, (h, k) Y ame
(4.46)(a) B (h.k) = 0 o 8, (h.K) Y} wer
2M+1 2M41 2M+1
r e 0
(4.46) (b) E(hk) = |8 I o
@ 0 B (hK
8 0
(4.46) (c) ad) ;‘ .= 0 , @ . 0
3 “n+i N
@ el Y. Coals I
-16-




holds.

(4.47)(a)

(4.47)(b)

The first and last rows of Dy(h,k), Dz(h,k)

Neumann conditions.

The matrices Lo(h.k), L,(h,k) are derived by taking q,(xt.o,h,k), qz(xi.O,h,k)

instead of g, (x,,0,0,0) and g_(x ,0,0,0) resp. Because of (4.26), (4.27) we get
1% 2'% P

(4.48)

uniformly as h,k + O,

1
D‘(h,k) = on

1
D, (h,k) = —
2 h2

lLl(h'k).iz
h

0

1

Here we denoted the difference matrices

0

0
AN

0 1
\\\ -1\\\

< const. ,

3}
[V} 0 0
- —~—
2M+1
-2 2 o k
1 ~2 1\ []
1 -2 1
8 1 -2 1
L [\ 2 -2 J
\——-*————‘\/'———“_"/
2M+1

come from incorporating the homogeneous

Lt =0,1




We easily obtain

1 o kD,(h,k)B;‘(h.k)

(4.49) B hk) = [0 1 kD, (h,k)By' (h,k)
-1
e 0 By (h,k)
and
" i )
I 8 -kp(nk) ] cink)’
3=
-1 i i .
(4.50) (Ey (h,0)E, (h,k))" =] 0 I  -kDy(h,k) ] c(nlk)
ju1
i
0 0 Cc(h,k)
L ! J
for 1 0.
2
We set a, = 81("1'0'0'0)' 8, -ﬁa,(xi,o,o,m and get from (4.32)(a),(b)
Kk k
(4.51) Bo(h,k) = I-(3 AD,(n,k) + 3 AD (h,K))
k k
(4.52) By (k) = I+ £ A.D(h,k) + 3 A D (hk))

where Az = diag(a_",.,.,ao,...,uu) and A' = diag(ﬂq",...,ﬂo,...,ﬂu) holds, Since

h2 = Ak we get

(4.53) 1z (k)8 53 S const.

(L,)
Obviously

i i 3

(4.54) Y =Xx ] cthk)

3=
solves the matrix iteration
(4.55)(a) Y e ctnYt ¢ xcinx) , 0 <4 € N-d
(4.55) (b) a0 .
From (4.37) we get
(4.56) max I¥'1 , < const.ts (M), .

0<iln I'lh

Because of (4.38) B, (h,k) is uniformly bounded (in f.}zi) and therefore the right

hand side of (4.56) is uniformly hounded as h,k + O, We obtain

.18~




i
(4.57) 1Dk I i,

i
;o 0k 1 i, Cconse., 0¢icn

R
uniformly as h,k * O.
It is interesting to note that the mesh-size restriction (4.38) is not necessary for
the implicit Buler-scheme since for this fully implicit scheme B, = I holds.

{4.57) implies LZ-stability of (4.45):

(4.58) 12 (h,k)E, (h,k))) 8 < const. for 0 € i €N :
. (\ 1 +2,3 :
{L7)
h
uniformly as h,k *+ 0.
By proceeding similarly to Richtmeyer and Morton (1965, Chapter 3.9) we get
(4.59) A" < const. (1A%1 + max (EHYM )
(-2)3 (52)3 169¢n 1 1zeM =2
Ly h 3
where (An):_o solves (4.45). For the (first) time difference quotient of R" we get
§'R" = i-(C(h,k) - DR" ¢+ (B;‘(h,k)Lo(h,k)Rn +
(4.60)
-1 - n+1 -1 j jyn M -1 ‘n+t M
+ B, (h,k)L1(h,k)R + Bo (h,k)(ﬂi(Pi,Qi)j=1)i=_H + B, (h,k)(Fi )i=-M)

where Ll(h,k), %2 = 0,1 stands for the (block) matrix in the (3,3) position of L_(h,k).
From (4.36), (4.37) we get

(4.61) 18R, < const (1% v max 1 v max mee))] 1 )
i Hy  1<5% (ED)7 i<jénst . i

Similarly we get bounds for the spatial & fference quotients and using (4.59) we obtain the

stability estimate

(4.62) 1IR™ _ < consto (BRON _ + 1501 _ + 13%0 _ + max 0P 0 )
2 W2 -2 2" w2
Hh n Lh h
From (4.29) we get immediately
(4.63) ve ™™ L < conse.
[}
¢, a, L2y » ¢ ()

uniformly as h,k * 0 where

~(N)

(4.64) W Ny

a ()
(("i)ja-')i=~n-1
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and

(4.65)(a) “2 =W = (e, <0
(4.65)(b) "ij = w‘i’ L im (-M=1)(1)(M¢1), 0 < § & N
holds.

As a lengthy (but easy) calculation shows G; n is uniformly Lipschitz continuous in
’

A(N)

a sphere sp(w ) < C:(Hi) whose radius ¢ is independent of h,k:

. o, ., (N) < (N) _ _(N)
(4.66) lelh(Y ) Gk’h(z " const. VY z 1

1,.2 2 -2 1 .2
Ck(Hn)*Ck(Hn,Ln) Ck(Hn)

for zM), yN) ¢ sp(G(")

). Since (4.20) implies that
'W(N) - Q(N)'

(4.67) 1
Ck(H

= 0o(1) as T *+ 0

2
n)

holds, the estimate (4.63) is also fulfilled by g! . (4N

) 4if T is sufficiently small.
k,h

Applying Keller's (1975) theory we obtain
Theorem 4.1, Assume that the assumptions (4.20) and (4.38) hold. Then for h,k
sufficiently small the scheme (4.8), (4.9), (4.10), (4.11) has a locally
n M+1 N

unique solution ((U,) )

1) jmepi=1 nmae if T is sufficiently small and the

convergence estimate

N M 2

ne=®’ jxoM

n
(4.68) l((Ui - u(xi,tn)) c

as h * 0 holds. The (abstract) Newton method for (4.13) converges quadratically from a
(sufficiently small) sphere of starting values whose radius is constant as h,k + 0,
Of course, T can be taken independently of h,k.

Remark . Renardy (1981) assumed that g : R X 51 + H‘([-1,1]), 61<= H‘([-1,1]) holds
instead of (4.20)(a). This is a more realistic assumption (with respect to
viscoelastic problems) since H‘([-1,1]) is a Banach algebra (elements can be
multiplied), but the perturbation approach (4.45) would not go through as
presented. However, this is a technicality which can be repaired by

incorporating one more x-difference quotient into the spaces.




As an example, we apply our Crank-Nicolson-type scheme to a model for the stretching
of a thin filament of a viscoelastic fluid when a force f is applied to its ends (derived

by Renardy (1981h)):

(4.69)(a) b =2 (3 XE 4 et - gt x € [-1,1], t € (0,7)
* tt  dx u2 x X w2 x ! i !
x X

{4.69)(b) ulx,t) = u(x,t) , x & [(~1,1], t € {-=,0]
(4.69)(c) ux(1,t) =y(t) , te [-=T]
(4.69)(d) “x"""’ = y(t) , t & [-»T]
where y(t) solves
(4.70)(a) an L, yiory®) - 2~ cy®) = £(e), £ € o,7]

y (¢) y(t)
(4.70)(b) y(t) = Gx("t) = Gx(-1,:) ., te {-=,01 .
The hiatory u{x,t) is assumed to be an odd function of x for all ¢ € {-=,0], F, G

are functionals (of Volterra type). The parameters @, N and the physical meaning of u
is explained in Renardy (1981b).

At first we apply the midpoint rule (3.3), (3.4) to the boundary problems (4.69) and

Z obtain
| +.n n_ n+l t

(8.71)(a)  12n —S X ¥ g N TRy,

n_n+t 2 2 k
(y+4y )
4 () Sae1/2
TR ek LA ) = f(tn+t/2" 0<nc<N
(y 4y )
(4.71)(b) K G0t nco .

(4.8)-(4.11) applied to (4.69) gives

n,2 n,.,n n
88,8 up(aul)® - 286uTsula 4 ]

(4.72)(a) p6767U" = 3
i n,4

(au™)

1

+

t
(N}, n
+ A+A_ui‘f((1kAu1 y ™M
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SN V.

(4.72) (b)
(4.72)(c)
(4.72)(q)

Here F\' G,

t t
(N), n (N} "n
+ aulF (3, 800") gy 8 80y "y

n
Au?A*A_Ui

t
. (N), n
+ 2 _—_G((l AU ) ) -
(AU?)‘ k i

gu))‘n
1

t
(N), 'n,,.
) )(lkA*A_U

1
G, ((i AU
VI A R
1
for i € -M{(1)M, O <n <N
u? = Glx,t ), 4= MM, n <O
AU:'Yn ¢+ D EN

AUn_H-yn ¢« NSN .

denote the first Frechet derivatives of F and G resp.
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